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We study on-off intermittent behavior in two coupled double-well Duffing oscillators with stochastic driving
and demonstrate that, by using slow harmonic modulation applied to an accessible system parameter, the
intermittent attractors can be completely eliminated. The influence of noise is also investigated. Power-law
scaling of the average laminar time with a critical exponent of −1 as a function of both the amplitude and
frequency of the control modulation is found near the onset of intermittency, which is a signature of on-off
intermittency.
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Coexisting attractors and intermittency are common com-
plex phenomena observed in many nonlinear dynamical sys-
tems. The intermittency route to chaos may be observed in a
dynamical system when a control parameter passes through a
critical value. The intermittent behavior is characterized by
irregular bursts(turbulent phases) interrupting the nearly
regular (laminar) phases. Different types of intermittency
have been observed and classified into type I, type II, and
type III of Pomeau-Manneville intermittency[1], on-off in-
termittency [2], and crisis-induced intermittency[3]. The
type of intermittency depends on the type of bifurcation at
the critical point. The type I and on-off intermittency are
associated with saddle-node bifurcations, the type II and type
III with Hopf and inverse period-doubling bifurcations, re-
spectively, and crisis-induced intermittency with a crisis of
chaotic attractors when two(or more) chaotic attractors si-
multaneously collide with a periodic orbit(or orbits) [4].

On-off intermittency differs from other types of intermit-
tency because it requires a dynamical time-dependent forcing
of a bifurcation parameter through a bifurcation point[5],
whereas for other types of intermittency the parameters are
fixed. Therefore, this type of intermittency is often called
modulational intermittency[6]. In on-off intermittency one
or more dynamical variables of the system exhibit two dis-
tinct states as the system evolves in time. In the “off” state
the variables remain approximately constant in various time
intervals. These periods are called laminar phases. The “on”
states are characterized by irregular bursts of the variables
away from their constant values.

The effect of on-off intermittency has been investigated in
one-dimensional maps coupled to either random or chaotic
signals[5,7], in a forced logistic map whose control param-
eter fluctuates either chaotically or stochastically[8], and in
periodically forced coupled Duffing oscillators[9,10]. Like
the other types, on-off intermittency is characterized by fun-
damental statistical properties with typical power-law scal-
ings near the onset of intermittency:(i) for the mean laminar
phase as a function of the coupling parameter with a critical
exponent of −1[7], and(ii ) for the probability distribution of
the laminar phase versus the laminar length with exponent

−3/2 [7]. The on-off intermittency has also been detected
experimentally in electronic circuits[11], in a gas discharge
plasma[12], in a spin wave system[13], in nematic liquid
crystals[14], and in a laser[15]. In the case of periodically
driven systems, the same critical exponent of −1 for the
mean laminar phase has been found in laser experiments as a
function of both the amplitude and frequency of the paramet-
ric modulation near the onset of intermittency[15].

The possibility for controlling on-off intermittent dynam-
ics was investigated first by Nagai, Hua, and Lai[10]. Their
control method is based on the ideas of Ott, Grebogi, and
Yorke (OGY) for controlling chaos[16]. Specifically, they
devised an algorithm for stabilizing a trajectory in the vicin-
ity of a desirable(“off” ) state by using arbitrarily small feed-
back perturbations to a system parameter. Their closed-loop
control algorithm requires the knowledge of system equa-
tions. However, in many practical situations the detailed sys-
tem equations are not available. For such a case, an open-
loop control algorithm might be more realistic. Before the
OGY method, Lima and Pettini[17] proposed a nonfeedback
perturbative technique of stabilizing a chaotic system toward
a periodic state. This technique was applied experimentally
for eliminating chaotic oscillations in a bistable magnetoelas-
tic system[18] and for stabilizing periodic orbits in a laser
[19].

In this Brief Report we study the possibility of controlling
on-off intermittency by harmonic modulation applied to an
accessible system parameter. Our method to confine a trajec-
tory in the “off” state is based on Lima and Pettini’s idea of
the open-loop control of chaos. Similarly to Nagai, Hua, and
Lai [10], we assume that the desirable operational state of the
system is the “off” state and the “on” state is undesirable.
That is, we wish to avoid temporal bursts(“on” states) of
dynamical variables. As distinct from the closed-loop con-
trol, the open-loop control is not restricted to small perturba-
tions. The modulation amplitude may be arbitrarily large to
achieve the control goal. However, the main advantage of
this type of the control is that it does not require a prior
knowledge of system equations. We also show in this work
how the control works in the presence of external noise of
different levels.

The analysis is carried out on an example of two coupled
double-well Duffing oscillators with random driving. Along
with many other complex systems, the coupled Duffing os-*Electronic address: apisarch@cio.mx
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cillators exhibit coexistence of several attractors; some of
them may be chaotic(intermittent), while the others are
steady states. In such a situation, the control of intermittency
may be manifested as annihilation of the intermittent attrac-
tors so that all trajectories are driven to the steady states. In
our recent work[20] we showed that coexisting fixed points
and limit cycles in multistable systems can be annihilated by
harmonic parametric modulation. In this work we demon-
strate how the annihilation effect is achieved with intermit-
tent states in randomly driven Duffing oscillators.

The dynamics of two identical nonlinear oscillators with
random driving can be governed by the equation,

ẍ + gẋ − qjx = − = Vsxd, s1d

wherex;sx,yd, g is a damping factor,j is uniformly dis-
tributed noise of levelq in the unit interval[0,1], andVsxd is
a two-dimensional anharmonic potential function of coupled
oscillators that for symmetric Duffing oscillators can be ex-
pressed as follows[10]:

Vsx,yd = s1 − x2d2 + sy2 − a2d2sx − dd + bsy2 − a2d4, s2d

wherea, d, andbs.0d are parameters. We assume that one
of the coupled subsystems(in the x direction) is randomly
driven, i.e., noisy. The system Eqs.(1) and(2) can be written
as four first-order differential equations in terms of the dy-
namical variablesx1=x, x2= ẋ, x3=y, andx4= ẏ,

ẋ1 = x2, s3d

ẋ2 = − gx2 + 4x1s1 − x1
2d − sx3

2 − a2d2 + qjx1, s4d

ẋ3 = x4, s5d

ẋ4 = − gx4 − 4x3sx3
2 − a2dsx1 − dd − 8bx3sx3

2 − a2d3. s6d

The system Eqs.(3)–(6) exhibits different dynamical regimes
from regular states to on-off intermittency in a wide range of
parameter values[9]. For simplicity we consider the caseg
=0.04,a=0.73,b=0.008, andd=−1.8. Due to the presence
of two invariant subspaces atx3= ±a andx4=0, there are two
“off” states, i.e., the phenomenon referred to astwo-state
on-off intermittency[10]. The two “off” states arise from two
wells in the potentialVsx,yd in the y direction. At relatively
low noise sq,3d, the one-state and two-state intermittency
regimes appear only as transients. The two-state on-off inter-
mittent attractor is created at relatively high noisesqù3d and
coexists with two steady states corresponding to the potential
wells. Our goal is to eliminate the intermittent attractors so
that a trajectory initiated from a random initial condition
stays in the vicinity of one of the potential wells iny, assum-
ing that this potential well is the desirable state of the sys-
tem.

We choosea to be the parameter to which the control
modulation is applied in the following form:

a = a0f1 − m sins2pftdg, s7d

wherem and f are the modulation depth and frequency and
a0 is the initial value of the parametersa0=0.73d. A glimpse

of the results is presented in Fig. 1 where we demonstrate the
control effect on some of the coexisting attractors. The sys-
tem, prior to the control, is in the chaotic state. When the
control is switched on(at t=5000), the intermittent attractors
disappear, and the trajectory is attracted to one of the remain-
ing steady states. Note that the external harmonic modulation
creates a limit cycle around each fixed point so that the final
state is a periodic orbit. When the modulation amplitude is
applied but is not sufficiently large to eliminate an intermit-
tent attractor, the system exhibits the coexistence of five at-
tractors. In addition to two limit cycles in the vicinity of each
potential well, two one-state and one two-state intermittency
regimes coexist. In Figs. 1(b) and 1(c) we demonstrate how a
sudden increase inm annihilates the intermittent states re-
sulting in the periodic bistability.

The required modulation amplitude for the control de-
pends on both the noise level and the modulation frequency
as shown in Fig. 2. In the presence of the parametric modu-

FIG. 1. A slow parametric modulation leads to the disappear-
ance of intermittent attractors. The initial system states are(a) two-
state on-off intermittency without modulationsm=0d, and(b) one-
state and(c) two-state on-off intermittency with small modulation
sm=0.1d. The arrows indicate the moments when the control with
m=0.4 andf =0.01 is applied. The trajectory is attracted to the limit
cycle in the vicinity of one of the potential wells. This demonstrates
the flexibility of the control to select different desirable “off” states.
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lation Eq. (7), the intermittent attractors appear at a certain
level of the noise(q.1.9 for f =0.01) [Fig. 2(a)]. To elimi-
nate these attractors, the amplitude of the control modulation
should be above some critical valuemc, i.e., above the cor-
responding bifurcation lines in Fig. 2. Note that, for rela-
tively low noise s1.9,q,3d, there are two critical values
for the modulation amplitude, which correspond to the onset
and offset of on-off intermittency. The two bifurcation lines
in Fig. 2(a) are good fits of the data to the exponential
growth and decay with critical exponents of 1 and 0.25, re-
spectively. As seen from Fig. 2(b), the intermittent attractors
can be destroyed only by slow parametric modulation
sf ,0.05d when m.mc. In the regime of on-off intermit-
tency, a typical trajectory spends a long time near one invari-
ant subspace(laminar phase), and when the modulation is
fast, the system has no time to respond to the control. In
other words, the period of the modulation should be of the
same order of magnitude as the characteristic time for which
the trajectory spends near one invariant subspace before be-
ing repelled away. Of course, the duration of the laminar

phase depends on the noise level. This suggests that the rea-
son for the control effect is a resonant interaction of the
modulation frequency with the frequency at which the trajec-
tory was repelled away from one of the invariant subspaces.

Taking into account the above speculations, the mean du-
ration of the laminar phase is one of the important character-
istics both for achieving the control goal and for character-
ization of the observed intermittent behavior in general. In
Fig. 3 we plot on a log-log scale the mean duration of the
laminar phase,ktl, as a function of both the relative differ-
ence of the modulation depth from its critical valuesmc

−md /mc [Fig. 3(a)] and the modulation frequencyf. We find
that in both cases these dependences obey the −1 scaling law
that characterizes on-off intermittency. This result agrees
well with other theoretical work where the control parameter
was driven randomly[7] and with laser experiments where
the parameter was modulated periodically[15].

In conclusion, the possibility of the open-loop control of a
chaotic dynamical system that exhibits on-off intermittency
has been demonstrated. We have shown that a trajectory can
be stabilized in the vicinity of a desired state(“off” state) by
slow harmonic modulation applied to an available system
parameter. We have derived the conditions for the modula-
tion amplitude and frequency to achieve the control goal in

FIG. 2. Codimensional-2 bifurcation diagrams in space of(a)
noise level and modulation depth atf =0.01 and(b) modulation
frequency and depth atq=3. The boundaries between different dy-
namical regimes, one-state(1I) and two-state(2I) intermittency and
periodical orbit(PO), are shown. The bifurcation lines for the onset
of intermittency are indicated by the arrows. Only periodical re-
gimes exist in the dashed region.

FIG. 3. Average laminar length(a) versus relative difference of
modulation depth from its critical value atf =0.01 and(b) versus
modulation frequency atm=0.14 on log-log scales.q=2.5. The fits
of the data to straight lines are good, the slopes of which are −1.
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the presence of noise of different levels. A scaling law with a
critical exponent of −1 for the mean duration of the laminar
phase versus both the modulation amplitude and frequency
has been found. The coincidence of this scaling relation with
those of other work verifies the universal character of this
scaling relation for different types of driving and different
types of on-off intermittencies. The control can be realized
easily in practice, because in the experimental situation the

driving signal is well defined and hence the appropriate
modulation parameters can be computed and applied to the
system to eliminate intermittent attractors even without the
knowledge of an adequate theoretical model.

This work has been supported through a grant from the
Institute Mexico-USA of the University of California(UC-
MEXUS) and Consejo Nacional de Ciencia y Tecnologia
(CONACyT).

[1] Y. Pomeau and P. Manneville, Phys. Lett.75A, 1 (1979).
[2] E. A. Spiegel, Ann. N.Y. Acad. Sci.617, 305 (1981).
[3] H. Fujisaka, H. Kamifukumoto, andM. Inoue, Prog. Theor.

Phys. 69, 333 (1982).
[4] E. Ott, Chaos in Dynamical Systems(Cambridge University

Press, New York, 1993).
[5] N. Platt, E. A. Spiegel, and C. Tresser, Phys. Rev. Lett.70,

279 (1993); N. Platt, S. M. Hammel, and J. F. Heagy,ibid. 72,
3498 (1994).

[6] H. Fujisaka and T. Yamada, Prog. Theor. Phys.74, 918(1985).
[7] J. F. Heagy, N. Platt, and S. M. Hammel, Phys. Rev. E49,

1140 (1994).
[8] C. Toniolo, A. Provenzale, and E. A. Spiegel, Phys. Rev. E66,

066209(2002).
[9] Y.-C. Lai and C. Grebogi, Phys. Rev. E52, R3313(1995).

[10] Y. Nagai, X.-D. Hua, and Y.-C. Lai, Phys. Rev. E54, 1190
(1996).

[11] T. Yamada, K. Fukushima, and T. Yazaki, Prog. Theor. Phys.
Suppl. 99, 120 (1989); P. W. Hammer, N. Platt, S. M. Ham-
mel, J. F. Heagy, and B. D. Lee, Phys. Rev. Lett.73, 1095
(1994).

[12] D. L. Feng, C. X. Yu, J. L. Xie, and W. X. Ding, Phys. Rev. E
58, 3678(1998).

[13] F. Rödelsperger, A. Cenys, and H. Benner, Phys. Rev. Lett.
75, 2594(1995).

[14] T. John, R. Stannarius, and U. Behn, Phys. Rev. Lett.83, 749
(1999).

[15] A. N. Pisarchik and V. J. Pinto-Robledo, Phys. Rev. E66,
027203(2002).

[16] E. Ott, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett.64, 1196
(1990).

[17] R. Lima and M. Pettini, Phys. Rev. A41, 726 (1990).
[18] L. Fronzoni, M. Giocondo, and M. Pettini, Phys. Rev. A43,

6483 (1991).
[19] A. N. Pisarchik, V. N. Chizhevsky, R. Corbalán, and R. Vilas-

eca, Phys. Rev. E55, 2455 (1997); A. N. Pisarchik, B. F.
Kuntsevich, and R. Corbalán,ibid. 57, 4046(1998).

[20] A. N. Pisarchik and B. K. Goswami, Phys. Rev. Lett.84, 1423
(2000); A. N. Pisarchik, Phys. Rev. E64, 046203(2001) A. N.
Pisarchik, Yu. O. Barmenkov, and A. V. Kir’yanov,ibid. 68,
066211(2003).

BRIEF REPORTS PHYSICAL REVIEW E69, 067203(2004)

067203-4


